G-GRADED IRREDUCIBILITY AND THE INDEX OF
REDUCIBILITY

CHENG MENG

ABSTRACT. Let R be a commutative Noetherian ring graded by a torsionfree
abelian group G. We introduce the notion of G-graded irreducibility and prove
that G-graded irreducibility is equivalent to irreducibility in the usual sense.
This is a generalization of Chen and Kim’s result in the Z-graded case. We
also discuss the concept of the index of reducibility and give an inequality for
the indices of reducibility between any radical non-graded ideal and its largest
graded subideal.

1. INTRODUCTION

Let R be a commutative Noetherian ring, M an R-module, and N an R-submodule
of M. It’s known that N has an irreducible decomposition, that is, N is an inter-
section of irreducible submodules in M. When R, M, N are all graded with respect
to a torsionfree abelian group G, we can talk about G-graded irreducible submod-
ules of M and irreducible decomposition of N in M in the category of G-graded
modules. It’s natural to ask whether these two irreducibilities are the same. More
precisely, we want to know whether graded irreducibility implies irreducibility in
the nongraded sense. It’s well known that irreducibility implies being primary; in
[1, IV.3.3.5] we know being graded primary is the same as being primary. Chen
and Kim proved in [3] that the two irreducibilities are the same in the Z-graded
case. In this paper we extend this result to the case of any G-grading where G is a
torsionfree abelian group. In particular, as a consequence, a G-graded irreducible
decomposition is an irreducible decomposition in the usual sense, and both index-
es of reducibility, defined for G-grading and in the usual sense, will be the same.
Finally we estimate the indexes of reducibility of a nongraded ideal and its largest
graded subideal. We prove one inequality in the radical case and show by example
that it fails in general case.

In all the sections below we make the following assumptions unless otherwise
stated:

Assumption 1.1. R is a commutative Noetherian ring, M is a finitely generated
R-module. When we say R and M are graded without mentioning the group used
for grading, we are assuming that they are G-graded for a torsionfree abelian group
G. The identity element of G is denoted by 0.

The reason for these assumptions are as follows.
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When R is Noetherian and N C M are Noetherian modules, we have a finite
irredundant irreducible decomposition for N. So the index of reducibility defined
below will make sense.

The torsionfree property is essential. In fact, in the G-graded case where G has
torsion, the definition of prime ideals, primary ideals, associated primes will be
different. An example is the group algebra k[Zs] = k[z]/(2? —1). The ideal 0 is not
a prime ideal; however it’s a graded prime in the sense that if two homogeneous
elements multiply to get 0 then one of them is 0. Also the associated primes
(x +1),(z — 1) are all nongraded, so here we need a different definition for graded
associated primes. Such definitions can be found in [6]. In the torsionfree case,
a graded prime ideal is just a prime ideal that is graded; and the same holds for
graded primary submodules and graded associated prime ideals.

2. PRELIMINARIES
We recall the following standard definitions.

Definition 2.1. Let (G, +) be an abelian group. A ring R is said to be G-graded if
there is a family of additive subgroups Ry such that R = ®4cq Ry and RgRj, C Rgyp
for any g,h € G. For a G-graded ring R, an R-module M is G-graded if there is a
family of additive subgroups M, such that M = ®4eqM, and RyM;, C My, for
any g,h € G.

Definition 2.2. Let R be a Noetherian ring, M an R-module, N an R-submodule
of M. Then

(1) The submodule N is called irreducible if whenever Ny, Ny are two submodule
of M satisfying N1 N No = N we have Ny = N or No = N.

(2) Suppose moreover that R, M, N are G-graded. Then N C M is called G-
graded-irreducible, or simply graded-irreducible when G is clear, if whenever
Ny, Ny are two G-graded submodule of M satisfying Ny N No = N we have
N1 = N or NQ =N.

(3) The submodule N is called primary if M /N has only one associated prime. If
this prime is p we say N is p-primary. The set of associated primes of a module
M is denoted by Ass(M).

The above definitions hold for N C M if and only if they hold for 0 C M/N.
The following property is well known.

Property 2.3. An abelian group is torsionfree if and only if it can be totally or-
dered.

Proof. The if part is trivial. Now for the converse, if G is torsionfree, we can embed
G into some Q-vector space, order the basis element, and give the lexicographic
order on the vector space and restrict this order to G. (]

So now we can equip each torsionfree abelian group with a total order. We have
the following property.
Property 2.4. Let R be a graded ring satisfying (1.1). Then

(1) Let p be a graded proper ideal in R such that if f,g are homogeneous ele-
ments in R, fg € p, then f € p or g € p. Then p is a prime ideal.
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(2) Let M be a graded R-module, N be a graded submodule of M. Then every
associated prime of M/N is graded and is the annihilator of a homogeneous
element. In particular, N C M is primary if and only if M/N has only
one associated G-graded prime.

(3) If N,M are as in (2), then there is a graded primary decomposition.

(4) If N,M are as in (2) and N C M is graded irreducible, then M /N is graded
primary, hence primary with a unique graded associated prime.

Proof. For (1), See [7, A.IL.1.4]. For (2), See [7, A.IL.7.3] or [5, Prop 3.12]. For (3),
See [7, AIL.7.11], or [5, Ex 3.5]. (4) is a corollary of (3). |

The following definition comes from [7, A.I.4] ,[2, definition 1.5.13], and [3] in
the Z-graded case. In [2], [3] ”G-graded local” is called ”*local”.

Definition 2.5. A G-graded mazimal ideal of R is a G-graded ideal m which is
maximal with respect to inclusion in all G-graded ideals properly contained in R.
A G-graded ring R is called G-graded local if it has a unique G-graded maximal
ideal. A G-graded field is a G-graded ring k such that all the nonzero homogeneous
elements in k are invertible.

Remark 2.6. A G-graded ideal m is a G-graded maximal ideal if and only if R/m
is a G-graded field. In particular, if k£ # 0 is a G-graded ring, then it’s a graded
field if and only if it has only two G-graded ideals, namely 0 and k, if and only if 0
is a G-graded maximal ideal of k.

Definition 2.7. Let R be a G-graded ring. For an ideal I C R which is not
necessarily G-graded, as in [2] and [3], we define T* to be the ideal of R generated
by all the homogeneous elements in I.

Remark 2.8. Assume (1.1). Since G is torsionfree, Property 2.4(1) yields that p*
is a graded prime ideal contained in p when p is a prime ideal of R. In particular,
every G-graded maximal ideal m in R is a prime ideal of R, because m is contained
in some (not necessarily graded) maximal ideal n, and it follows that m = n* by
definition. So a graded field k¥ must be a domain. Therefore it makes sense to talk
about the rank of a k-module if k is a graded field.

Definition 2.9. Let R be G-graded, M a G-graded R-module, and p a G-graded
prime of R. The homogeneous localization of M at p, denoted by M, is WM
where W is the multiplicative set of all homogeneous elements not in p.

If R is graded, p is a graded prime of R, then R(,) is graded local.

Lemma 2.10. Let R be a Noetherian ring, p a prime ideal of R, M a finitely
generated R-module, and N an R-submodule of M which is p-primary in M. Then
N is irreducible in M if and only if Ny is irreducible in M,. Moreover, if R, M, N,p
are all G-graded, then N is graded-irreducible in M if and only if N, is graded-
irreducible in M.

Proof. See [3, Lemma 2]. The proof is for the Z-graded case but can be applied to
the G-graded case. O

3. THE STRUCTURE OF MODULES OVER GRADED FIELDS

It’s well known that if k is a field, then every vector space over k is free. Here
we prove a similar result when k is a graded field.
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Definition 3.1. Let R be a G-graded ring. We define the support of R, denoted
by Supp(R), to be {g € G : Ry # 0}.

If R is a domain, then Supp(R) is a subsemigroup of G. If k is a graded field,
then Supp(k) is a subgroup of G.

The following two theorems have more general versions using the notions of
strongly graded rings and graded division rings, see [7, A.1.3 and A.1.4]. We present
explicit proofs in our particular case.

Theorem 3.2. Let G be a group, and k a G-graded field. Then kg is a field, and
kg = ko as a ko-vector space for any g € Supp(k).

Proof. Every nonzero element in kg has an inverse in kg, so kg is a field. Take any
nonzero u € k4. Then the multiplication by v is a kg isomorphism of ky — k, with
an inverse which is the multiplication by u~!. O

Theorem 3.3. Let G be a torsionfree abelian group, and k a G-graded field. Then
any G-graded k-module M is free over k.

Proof. Let G' = Supp(k). Let S be a set of representatives in G of all the cosets
in G/G'. Then M = &(My)gec = Bses & (Msn)nea’) as k-module. So after
shifting it suffices to prove ®(Mp,)neq: is a free kp-module for any s and any graded
k-module M. Now M is a ko-vector space. Let {e;,i € I} be a basis for My and
choose a basis ug4 in kg for each degree g € G. Then in each degree, ug * ¢; is a
ko-basis for My. This means that M = @;crke;. Hence M is a free k-module. [

We want to restrict to the case where G is finitely generated using the Noetherian
condition. We can do this in the case of the group algebra.

Theorem 3.4. Let G be a finite generated torsionfree abelian group, say Z"™. Then
every G-graded field k is isomorphic to ko|G'] as a graded field, where G’ is the
support of k.

Proof. Since G’ is a subgroup of G, it is still a finitely generated torsionfree abelian
group, say @®;’,Ze;.For each i take a nonzero element a; in k.,. Then for any

h =mnjer+ngea+ -+ nmeny € G, al*ay? - - - altm is a nonzero element in ky,, thus
kp = ko x attay? - - alm. This means that k = ko[a1, az, ..., am] = ko[G']. ]

Remark 3.5. The conclusion of the theorem above is not true in general for tor-
sionfree abelian groups which are not finitely generated. In fact, we have to find
a basis for all the nonzero components of the graded field or graded module; and
there is no guarantee that one can find a collection of bases, labeled by the group,
that is closed under multiplication if the group is not finitely generated. There are
different isomorphic classes of such graded fields corresponding to the cohomology
classes in H?(G’, k); see [8, Ex 1.5.10].

From the following theorem we see that if £ is a Noetherian group algebra, then
its support is finitely generated. So we may assume G is finitely generated in this
case.

Theorem 3.6. Let k = ko[G] be a group algebra over a field ko, G any abelian
group, not necessarily torsionfree. Then k is Noetherian if and only if G is finitely
generated.
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Proof. The if direction is obvious since in the finitely generated case the group
algebra is the localization of a quotient of a polynomial ring over a field. Now
suppose G is not finitely generated. Consider any finitely generated ideal I. The
generators live in finitely many degrees. Let H be the subgroup generated by these
degrees, then I must be G/H-graded for some finitely generated H. Now consider
the map 7 : k — ko, Xa;g9; — Xa;. The kernel .J is an ideal in ko[G] generated by
(eg — 1)gee. If H is a subgroup such that J is G/H-graded then we must have
G = H. Thus J cannot be finitely generated. |

4. G-GRADED IRREDUCIBILITY IMPLIES IRREDUCIBILITY

In this section we prove our main result, that is, a graded irreducible submodule
of a graded module is irreducible.

Definition 4.1. Let (R, m, k) be a local ring or a graded-local ring. Let M be an
R-module. The socle of M, denoted by soc(M), is (0 :py m). When M is graded,
soc(M) is also graded. In both cases soc(M) is a free k-module.

Lemma 4.2. Let R be a Noetherian ring, M a finitely generated R-module, and
N C M a submodule. Suppose:(1)(R,m, k) is local and M /N is Artinian or (2)R, M
and N are all G-graded, (R, m, k) is graded-local, M /N is m-primary. Then N C M
is irreducible (resp. graded-irreducible) if and only if soc(M/N) has rank 1.

Proof. We may assume N = 0 after replacing M with M/N. Now suppose the rank
of soc(M) is at least two. Then there exist a k-basis of soc(M). Take the first two
basis element: ej,es € soc(M) C M then Re; N Res = 0. So 0 is not irreducible.
Now suppose the rank of soc(M) is one, say, soc(M) is Re = k as an R-module.
Then for any Ny, No € M, Ass(Ny) = Ass(N3) = Ass(M) = {m} because Ass(M)
consists of one prime and Ass(N7), Ass(Ny) are nonempty subsets of Ass(M). Now
soc(Ny) # 0, soc(N3) # 0 so we can take nonzero e; € soc(N1), ez € soc(Nz). They
must all lie in soc(M) = Re. Now k is a domain, hence 0 is an irreducible k-
submodule of k, hence 0 is an irreducible R-submodule of the R-module k. So
Rey N Res # 0 in Re 2 k. So 0 is irreducible. In the graded case, just take all the
modules to be graded and elements to be homogeneous. ]

Theorem 4.3. Let R be G-graded, M be a graded R-module, N be a graded primary
submodule of M, Then N is graded irreducible if and only if N is irreducible.

Proof. We know that M/N has a unique associated prime, denoted by p, and it’s
graded under assumption (2). Also, we may assume N = 0 after replacing M with
M/N. The 7if’ direction is trivial. Now let 0 be graded irreducible in M. Then
0 is an R(p)-submodule in M,y which is graded irreducible by Lemma 2.10. Then
soc(Myp)) = Ry /pR(p). Now (0 :ar,, m(p))p = (0 :ar, my) because m is finitely
generated. So soc(M,) = R,/pR,. This means 0 is irreducible in M,. So 0 is
irreducible in M by Lemma 2.10. (I

We have proved that graded-irreducibility is the same as being graded and irre-
ducible. Now we give the following definitions from [3] and [4], generalized to the
G-graded case. In [3] they are called the index of irreducibility and denoted by
ram(N) (vesp. 74,(N)).

Definition 4.4. Let N C M be R-modules. Then
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(1) The index of reducibility of N in M is irp(N) = min{r : N = Nl_;N;, N;
irreducible R-submodules of M}.

(2) When M and N are graded, the graded index of reducibility of N in M
is ir$,(N) = min{r : N = N/_, N;, N; graded-irreducible R-submodules of

When M is clearly understood we simply denote them by ir(N) (resp. ir9(N)).
Here is the G-graded version of [3, Theorem 7]. The proof is identical.

Theorem 4.5. Let R be a G-graded ring, M a G-graded module where G is abelian
but not necessarily torsionfree. Then the following are equivalent.

(1) Every graded-irreducible submodule of M is irreducible.

(2) For every graded submodule N of M, irp(N) =irf,(N).

(3) Every graded submodule N of M is a finite intersection of irreducible graded
submodules of M.

In particular these equivalent conditions all hold if G is torsionfree abelian.

Theorem 4.6. Let (R,m, k) be graded local, N C M are graded R-modules such
that M /N is m-primary. Then irpy(N) = rankgsoc(M/N).

Proof. Localizing at m. We have irp(N) = rankg,, soc(M/N ). Notice that the
rank of soc(M/N) will not change after localizing,. O

5. THE RELATION BETWEEN THE INDEX OF REDUCIBILITY OF I AND [*

Let R be a graded ring and I be an ideal of R which is not necessarily graded.
We want to compare irg(I) and irg(I*). Let’s consider a special case: G = Z and
R be the coordinate ring of a cone C in an affine variety A™, then R is G-graded.
In this case the operation I — I* has a geometric interpretation. Suppose I is
a radical ideal corresponding to a closed subset X in C', and X is not supported
at the origin. That is, X = V/(I) is the vanishing set of I. There is a natural
projection 7 : A" — {(0)} — P"~!. & restricts to two maps: C — {0} — P"~! and
X — {0} — P~ Then I* is a radical ideal, and its vanishing set is (X — {0})
in P!, because the maximal homogeneous ideal in I corresponds to the minimal
closed subset containing 7(X — {0}).

For a morphism f : Y — Y’ between varieties, if Z C Y is an irreducible
closed subset, then f(Z) is also irreducible. So if all the irreducible components are
reflected in the variety as a set, irg(I) should be greater or equal to irg(I*), because
every irreducible component of I or V(I) map to an irreducible subset contained
in V(I*). The equality holds if and only if different irreducible components do not
collapse to contain each other. Let Min(J) denote the minimal prime over an ideal
J, and |S| denote the cardinality of a set S. We have the following theorem:

Theorem 5.1. Let R be a G-graded ring where G is torsionfree abelian. Let I be
an R-ideal which is radical but not G-graded. Then ir(I) > ir(I*). The equality
holds if and only if the *-map induces a bijection between Min(I) and Min(I*).

Proof. The irreducible decomposition of I is I = N(p;);enrin(r) and this decompo-
sition is irredundant. So ir(I) = |[Min(I)|. Now taking star commutes with inter-
section, so I* = N(p; )iemin(r)- Note that I* is also radical so ir([*) = [Min(I*)].
After deleting some p} it becomes an irredundant irreducible decomposition. So
ir(I) > ir(I*). The equality holds if and only if no prime ideal is deleted, so those



G-GRADED IRREDUCIBILITY AND THE INDEX OF REDUCIBILITY 7

p¥ are just all the minimal primes of I*, so the *-map induces a bijection between
Min(I) and Min(I*). O

In general there is no control on the difference between ir(I) and ir(I*).

Example 5.2. Let R = k[z, y] which is Z-graded. Let I = (z, (y—a1)(y—az2) - -- (y—
a,)) where aj,as, ..., a, are pairwise distinct and all nonzero elements in k. Then
I* = (). In this case we see that I has r components which collapse to become
one component of I*.

In general, there is no fixed inequality between ir(I) and ir(I*). Here are two
examples where I and I* are both m-primary for a graded prime ideal m.

Example 5.3. Let R = k[z,y] be G = Z graded where k is a field. Let I =
(22, 2y, 93, — y?), then I* = (2%, 2y,9%). They are both m = (z,y)-primary.
R/m = k. soc(I) = kz,soc(I*) = kx + ky*. Soir(I)=1< 2 =ir(I*).

Example 5.4. Let R,m,G be as above, I = (2%, 2%¢y% vt 23y — y%x). I* =
(x*, 22y, 9y*). They are still m-primary. Now soc(I*) = ka3y + kxy®, soc(l) =
kxdy + k(z3 — 2y?) + k(2%y — y3). So ir(I) =3 > 2 = ir(I*).
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